Exercise 28

Solve the boundary-value problem, if possible.

$$
y^{\prime \prime}-8 y^{\prime}+17 y=0, \quad y(0)=3, \quad y(\pi)=2
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
r^{2} e^{r x}-8\left(r e^{r x}\right)+17\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-8 r+17=0
$$

Solve for r.

$$
\begin{gathered}
r=\frac{8 \pm \sqrt{64-4(1)(17)}}{2}=\frac{8 \pm \sqrt{-4}}{2}=4 \pm i \\
r=\{4-i, 4+i\}
\end{gathered}
$$

Two solutions to the ODE are $e^{(4-i) x}$ and $e^{(4+i) x}$. By the principle of superposition, then,

$$
\begin{aligned}
y(x) & =C_{1} e^{(4-i) x}+C_{2} e^{(4+i) x} \\
& =C_{1} e^{4 x} e^{-i x}+C_{2} e^{4 x} e^{i x} \\
& =e^{4 x}\left(C_{1} e^{-i x}+C_{2} e^{i x}\right) \\
& =e^{4 x}\left[C_{1}(\cos x-i \sin x)+C_{2}(\cos x+i \sin x)\right] \\
& =e^{4 x}\left[\left(C_{1}+C_{2}\right) \cos x+\left(-i C_{1}+i C_{2}\right) \sin x\right] \\
& =e^{4 x}\left(C_{3} \cos x+C_{4} \sin x\right)
\end{aligned}
$$

Apply the boundary conditions to determine C_{3} and C_{4}.

$$
\begin{aligned}
& y(0)=C_{3}=3 \\
& y(\pi)=-C_{3} e^{4 \pi}=2
\end{aligned}
$$

Solving this system of equations yields $C_{3}=3$ and $C_{3}=-2 e^{-4 \pi}$, which is a contradiction. Therefore, there's no solution to the boundary value problem.

